extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1(C2×C32⋊C6) = He3⋊8SD16 | φ: C2×C32⋊C6/C32⋊C6 → C2 ⊆ Aut C4 | 72 | 12- | C4.1(C2xC3^2:C6) | 432,152 |
C4.2(C2×C32⋊C6) = He3⋊6D8 | φ: C2×C32⋊C6/C32⋊C6 → C2 ⊆ Aut C4 | 72 | 12+ | C4.2(C2xC3^2:C6) | 432,153 |
C4.3(C2×C32⋊C6) = He3⋊6Q16 | φ: C2×C32⋊C6/C32⋊C6 → C2 ⊆ Aut C4 | 144 | 12- | C4.3(C2xC3^2:C6) | 432,160 |
C4.4(C2×C32⋊C6) = He3⋊10SD16 | φ: C2×C32⋊C6/C32⋊C6 → C2 ⊆ Aut C4 | 72 | 12+ | C4.4(C2xC3^2:C6) | 432,161 |
C4.5(C2×C32⋊C6) = C62.13D6 | φ: C2×C32⋊C6/C32⋊C6 → C2 ⊆ Aut C4 | 72 | 12- | C4.5(C2xC3^2:C6) | 432,361 |
C4.6(C2×C32⋊C6) = Q8×C32⋊C6 | φ: C2×C32⋊C6/C32⋊C6 → C2 ⊆ Aut C4 | 72 | 12- | C4.6(C2xC3^2:C6) | 432,368 |
C4.7(C2×C32⋊C6) = (Q8×He3)⋊C2 | φ: C2×C32⋊C6/C32⋊C6 → C2 ⊆ Aut C4 | 72 | 12+ | C4.7(C2xC3^2:C6) | 432,369 |
C4.8(C2×C32⋊C6) = He3⋊4Q16 | φ: C2×C32⋊C6/C2×He3 → C2 ⊆ Aut C4 | 144 | 6- | C4.8(C2xC3^2:C6) | 432,114 |
C4.9(C2×C32⋊C6) = He3⋊6SD16 | φ: C2×C32⋊C6/C2×He3 → C2 ⊆ Aut C4 | 72 | 6 | C4.9(C2xC3^2:C6) | 432,117 |
C4.10(C2×C32⋊C6) = He3⋊4D8 | φ: C2×C32⋊C6/C2×He3 → C2 ⊆ Aut C4 | 72 | 6+ | C4.10(C2xC3^2:C6) | 432,118 |
C4.11(C2×C32⋊C6) = C2×He3⋊3Q8 | φ: C2×C32⋊C6/C2×He3 → C2 ⊆ Aut C4 | 144 | | C4.11(C2xC3^2:C6) | 432,348 |
C4.12(C2×C32⋊C6) = C8×C32⋊C6 | central extension (φ=1) | 72 | 6 | C4.12(C2xC3^2:C6) | 432,115 |
C4.13(C2×C32⋊C6) = He3⋊5M4(2) | central extension (φ=1) | 72 | 6 | C4.13(C2xC3^2:C6) | 432,116 |
C4.14(C2×C32⋊C6) = C2×He3⋊3C8 | central extension (φ=1) | 144 | | C4.14(C2xC3^2:C6) | 432,136 |
C4.15(C2×C32⋊C6) = He3⋊7M4(2) | central extension (φ=1) | 72 | 6 | C4.15(C2xC3^2:C6) | 432,137 |
C4.16(C2×C32⋊C6) = C62.36D6 | central extension (φ=1) | 72 | 6 | C4.16(C2xC3^2:C6) | 432,351 |